

Novel integrated array EM for the different lifecycles of a geothermal prospect KMS Technologies

February 2015

> 15 years of excellence in electromagnetic R&D

Background >>> Lifecycles >>> Path forward KMS history

- Started in 1999 as technology development Group for Agip/ENI & Shell
- Strong in new technology development (EM emphasis)
- $\succ \qquad \text{Initial borehole tools} \rightarrow$
- \succ Geothermal acquisition services \rightarrow
 - Marine EM →
 - Since 2010: hardware manufacturer with global presence
 - Today Monitoring → Strategic MOU with PTTEP

Background >>> Lifecycles >>> Path forward KMS track record since 1999: EM only

> 15 years of excellence in electromagnetic R&D

Background >>> Lifecycles >>> Path forward Fully integrated Hi-res MT, gravity & seismic: Highlight Dense acquisition ($\Delta x = 50$ m) \rightarrow better images

© 2009- 2015 KMS Technologies

> 15 years of excellence in electromagnetic R&D

Confidential

4

Background >>> Lifecycles >>> Path forward How do we get there? EM methods review

Magnetotellurics – passive method

- Good for basin structure, obver-thrust, sub-basalt, sub-salt
- Controlled Source Electromagnetics (CSEM) more detail than magnetotellurics & noisy environment
 - Time domain EM a single signal generating event
 - Similar to seismic (acquisition & processing)
 - Frequency domain EM a fixed frequency continuous event

Background >>> Lifecycles >>> Path forward New ARRAY acquisition → better images

equency

Wiroloss (long rango & M

Itra - Iow

- Wireless (long range & WIFI)
- True array system
- Large dynamic range (up to 32 bits)
- High bandwidth (DC to 50 kHZ)

© 2009- 2015 KMS Technologies

Background >>> Lifecycles >>> Path forward Geothermal relevant EM lifecycles

EM has been the geophysical workhorse for the geothermal industry

Background >>> Lifecycles >>> Path forward Geothermal relevant Examples of integrated EM

Background >>> Lifecycles >>> Path forward Iceland: punch line

- All volcanic material
- Target: find additional reservoir to feed power plant
- Survey mapped resistive & conductive targets
- MT data to be integrated with TEM & all others data

Homeun 23.07.07 F8Hb

Background >>> Lifecycles >>> Path forward Iceland: TEM & MT results – interpretation integrated

Background >>> Lifecycles >>> Path forward Hungary: punch line

 \mathbf{i}

- Hungary is rich in low heat entropy geothermal resources.
- Reliability of previous data was poor.
- Earlier surveys were not aimed for geothermal exploration.
- MT & gravity survey was performed for potential geothermal evaluation areas.
- Integrated interpretation helps to select drilling location.
- > Drilling result showed success on 1^{st} evaluation well $\rightarrow 4 \text{ MW}$
- More drilling is ongoing & planned.

Background >>> Lifecycles >>> Path forward Hungary AMT/MT & gravity survey map

© 2009- 2015 KMS Technologies

> 15 years of excellence in electromagnetic R&D

Background >>> Lifecycles >>> Path forward Hungary: Integrated interpretation

Background >>> Lifecycles >>> Path forward MT instrument field calibration

Background >>> Lifecycles >>> Path forward Field gravity survey calibration

Hungary Gravity Base Network Data

<u>4145. Csákán</u> Y= 513 961; X= 133 820; Elevation: 126.653 m g = 980 718.679 mgal

> 15 years of excellence in electromagnetic R&D

Geothermal drilling success! 4 MW

Video is at www. KMStechnologies.com

ential 17

Hungary conclusions

- Anomalies buried at depth between 1,000 m ~ 2,000 m;
- Conductive heat flow from magma through sediments to surface is main geothermal source;
- Deep fault may extend through crust & reach mantle;
- Successfully drilled 1st evaluation well near Szl in 09/2009;
- 85°C hot water with peak heating capacity of 4 MW at depths of 1,620 to 1,790 m;
- The total project scope: Possible to supply 700,000 homes in Hungary with geothermal energy within next decade.

Background >>> Lifecycles >>> Path forward Geothermal relevant Examples of integrated EM

Background >>> Lifecycles >>> Path forward Urach geothermal area

A low velocity anomaly is known

A low resitivity anomaly is known from MT, depth to top is mostly unknown

- ➢ Objective tCSEM™: Define top of low resistivity zone better.
- Problem: a lot of electrical noise

© 2009- 2015 KMS Technologies

> 15 years of excellence in electromagnetic R&D

Background >>> Lifecycles >>> Path forward Urach: processing example (6)

© 2009- 2015 KMS Technologies

> 15 years of excellence in electromagnetic R&D

Strack, 1992 Confidential 22

Background >>> Lifecycles >>> Path forward Urach: interpreted section & log

Background >>> Lifecycles >>> Path forward University of Hawaii geothermal project: KMS 820 data

© 2009- 2015 KMS Technologies

> 15 years of exceCourtesyeEcGaspericova 82012, LBL-NL

Background >>> Lifecycles >>> Path forward Geothermal relevant Examples of integrated EM

Background >>> Lifecycles >>> Path forward Why EM & Seismic are complimentary

- > Seismic detects container boundaries, EM the fluids inside
- Determining composition, boundaries and movement
- Best quality data! both
- Combination of Seismic and EM offer best solution
- EM has proven as valid DHI (Direct Hydrocarbon Indicator)

SENSOR CAPABILITY	RESOLVING POWER				
	Distance	Fluid	Surface-to- surface	Borehole-to- surface	Borehole
Seismic	Excellent	Poor	Excellent	Excellent	Ok (more noise)
EM	Ok (5% of depth)	Excellent (water to HC)	Ok	Excellent	Excellent (less noise & distance)
Gravity	Poor	Ok (oil to gas)	Poor	Poor (no source)	Poor (no source)
Strongest Synergy	Seismic	EM/seismic	Seismic/EM/ gravity	Seismic/EM	Seismic/EM/ gravity

Background >>> Lifecycles >>> Path forward Elastic properties of rock constituents

Mean values & overview

Rock forming minerals:	V _P (m/s)	V _s (m/s)
Quartz	6000	4100
Calcite	6600	3400
Dolomite	7300	4000
Pore fluids:		
Water	1450 … 1700	no
Oil	1000 1400	shear
Gas	300 400	wave
gas oil water		minerals
0 2000	4000	6000 m s ⁻¹
Velocity decrease	es with increasing	porosity

© 2009- 2015 KMS Technologies

> 15 years of excellence in electromagnetic R&D

Confidential 27

SYS99

© 2009- 2015 KMS Technologies

> 15 years of excellence in electromagnetic R&D

Background >>> Lifecycles >>> Path forward Reservoirs seal: EM & microseismic - effective stress

After Carlson, 2013

- Overburden & fluid stress in balance
- When fluid pressure too high →quick sand
- Seal BRITTLE → porosity reduction → resistivity increase
- Seal FRACTURE → porosity increase → resistivity increase
- Microseismic signature from fracturing
- EM responds to fluid movements
- EM signature from brittle & fracturing

Background >>> Lifecycles >>> Path forward Feasibility case history: Imperial Valley, CA - Brawley punch line

- Geothermal power plant producing since 1980s
- Production in decline; needs to go to 50 MW
- > 30 years of microseismic monitoring no answers
- Low resistivity low contrast environment
- Little information about the reservoir sweet spots.
- Carried out EM feasibility to monitor sweat spots in reservoir

Background >>> Lifecycles >>> Path forward Imperial Valley: Area with seismic horizons

Transmitter Tx and receiver profile Rx

© 2009- 2015 KMS Technologies

> 15 years of excellence in electromagnetic R&D

Background >>> Lifecycles >>> Path forward Imperial Valley: INPUT DATA: seismic horizon 4 with well positions

> 15 years of excellence in electromagnetic R&D

Background >>> Lifecycles >>> Path forward Imperial Valley: Workflow

- Reference model: conductive background (1 ohm.m)
- Build 3D model, after verification add seismic reservoir layers, model and calculate DIFFERENCE from baseline
- FIRST: compare different reservoir sizes (production depletion)
 - Small medium large reservoirs
- > SECOND: verify that voltage can be measured \rightarrow signal

Background >>> Lifecycles >>> Path forward Imperial Valley: 3D reservoir: relative difference, LARGE block

© 2009- 2015 KMS Technologies

> 15 years of excellence in electromagnetic R&D

Background >>> Lifecycles >>> Path forward Imperial Valley: Noise test setup

© 2009- 2015 KMS Technologies

> 15 years of excellence in electromagnetic R&D

Background >>> Lifecycles >>> Path forward Imperial Valley: RESULT: transients with expected noise levels / Tx current

Horizon 3 & 4 size 6000 m x 4500 m whole block

Rx

Tx -current:

Тх

300 A 2x longer than 200 m 2x switch step over

= 1200 A

© 2009- 2015 KMS Technologies

36

Background >>> Lifecycles >>> Path forward Geothermal relevant Examples of integrated EM

Background >>> Lifecycles >>> Path forward Ghawar: Fluid displacement heterogeneity

Fractures

The state

-

Background >>> Lifecycles >>> Path forward Ghawar: ADD BOREHOLE: Integration!

> 15 years of excellence in electromagnetic R&D

Background >>> Lifecycles >>> Path forward Kuwait: geologic sections & objectives

© 2009- 2015 KMS Technologies

> 15 years of excellence in electromagnetic R&D

Background >>> Lifecycles >>> Path forward Kuwait: Line layout

• Transmitters may be 'L' shape ,

Tx length 500 m

Offsets: 500 - 750 m (TEM)

moving for FSEM

inline or broadside

Consecutive survey may use subset transmitters

Rx reference (possible)

> 15 years of excellence in electromagnetic R&D

Background >>> Lifecycles >>> Path forward Kuwait: Line layout

8 KMS-029 fluxgate sensor, between KMS 820 site & 831

8 KMS 820 acquisition system 8 KMS 831-6; 32-bit interface , 6 channels used @ 100 m intermediate sites 16 Ex & Ey dipole 50 m @ every site

Background >>> Lifecycles >>> Path forward Kuwait test TEM versus Focused Source EM

Background >>> Lifecycles >>> Path forward Kuwait test TEM versus Focused Source EM expected results

FOCUSED: Anomaly ~75%

© 2009- 2015 KMS Technologies

Confidential 44

44

Background >>> Lifecycles >>> Path forward EM for geothermal will

Acquire denser data Seismic & EM Bring back CSEM Use EM for monitoring Integrate surface vitamenole

Courtesy E. Gasperikova, 2012

© 2009- 2015 KMS Technologies

> 15 years of excellence in electromagnetic R&D

MT: 30 years of progress

© 2009- 2015 KMS Technologies

UNPUBLISHED, courtesy RWE-Dea

© 2009- 2015 KMS Technologies